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Abstract. Quantitative volcanic ash cloud forecasts are prone
to uncertainties coming from the source term quantification
(e.g., the eruption strength or vertical distribution of the emit-
ted particles), with consequent implications for an opera-
tional ash impact assessment. We present an ensemble-based
data assimilation and forecast system for volcanic ash disper-
sal and deposition aimed at reducing uncertainties related to
eruption source parameters. The FALL3D atmospheric dis-
persal model is coupled with the ensemble transform Kalman
filter (ETKF) data assimilation technique by combining ash
mass loading observations with ash dispersal simulations in
order to obtain a better joint estimation of the 3-D ash con-
centration and source parameters. The ETKF–FALL3D data
assimilation system is evaluated by performing observing
system simulation experiments (OSSEs) in which synthetic
observations of fine ash mass loadings are assimilated. The
evaluation of the ETKF–FALL3D system, considering refer-
ence states of steady and time-varying eruption source pa-
rameters, shows that the assimilation process gives both bet-
ter estimations of ash concentration and time-dependent op-
timized values of eruption source parameters. The joint es-
timation of concentrations and source parameters leads to a
better analysis and forecast of the 3-D ash concentrations.
The results show the potential of the methodology to improve
volcanic ash cloud forecasts in operational contexts.

1 Introduction

Volcanic ash dispersal forecasts are routinely used to pre-
vent aircraft encounters with volcanic ash clouds and to de-
fine flight rerouted trajectories, avoiding potentially contam-
inated airspace areas. In the aftermath of the 2010 Eyjafjalla-
jökull volcanic eruption in Iceland, safety-based quantitative
criteria for air traffic disruption were introduced, originally
based on ash concentration thresholds and, more recently, on
engine-ingested dosage (Clarkson et al., 2016). These sce-
narios involve the implementation of quantitative ash con-
centration forecasts, which require better model input con-
straints, particularly on ash emission rates and/or on model
initialization. A large amount of scientific research has been
conducted in recent years to achieve the following: (i) better
quantify the amount of ash emitted, its vertical distribution
across the column, and the related uncertainties; (ii) obtain
data on the 3-D structure of ash clouds, particularly using
ground, aircraft, and space-based instrumentation; (iii) im-
prove model representation of the physical processes occur-
ring within ash plumes and clouds; and (iv) transfer scientific
outcomes into operations. However, despite the substantial
advances in model formulation and initialization, it is esti-
mated that, in operational contexts, forecasted ash concen-
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trations can still have an uncertainty as large as 1 order of
magnitude (e.g., IVATF, 2011).

Epistemic uncertainties in ash dispersal forecasts may
have different origins, including the following: (i) uncertain-
ties in the source term (i.e., eruption column height, mass
eruption rate, particle grain size distribution); (ii) uncertain-
ties in the atmospheric model driving dispersal simulations
(e.g., wind velocity and direction, small-scale turbulence in-
tensity, atmospheric temperature, and humidity); and (iii) un-
certainties in model parameterizations of the physical pro-
cesses occurring both in the eruptive column and during
subsequent passive transport (e.g., ash settling and removal
processes, particle aggregation, interaction with meteorolog-
ical clouds, etc.). In addition to these, aleatoric uncertainties
always exist regarding the future evolution of the eruption
source parameters (ESPs) when an eruption is ongoing at
the time of running a forecast. Several studies (e.g., Zehner,
2010; Kristiansen et al., 2012) have concluded that the main
source of epistemic uncertainty in ash dispersal forecasts
comes from ESPs that very often are not well constrained
in real time.

Inverse modeling and, in particular, data assimilation
methods are techniques that can be used to estimate the state
of dynamical systems based on partial and noisy observa-
tions. In a broad sense, these techniques build on continu-
ous or quasi-continuous observations to produce model ini-
tial conditions (analyses) that can be used to better predict
the future state, taking into account uncertainties in observa-
tions and model formulation. Data assimilation methods have
been successfully applied to the estimation of the state of the
ocean or the atmosphere (e.g., Kalnay, 2003; Carrassi et al.,
2018) as well as for the optimization of uncertain model pa-
rameters (e.g., Ruiz et al., 2013). More recently, applications
have been extended to atmospheric constituents (e.g., Boc-
quet et al., 2010; Hutchinson et al., 2017), including ash dis-
persion models with the purpose of estimating the 3-D dis-
tribution of ash concentrations to be used as initial condi-
tions for forecasts. Surprisingly, examples of the application
of data assimilation techniques to volcanic ash dispersion are
scarce and still mainly limited to a research level. For ex-
ample, Wilkins et al. (2015) implemented a data insertion
methodology to improve the initial conditions of ash concen-
trations based on satellite estimations of ash mass loadings
in a Lagrangian dispersion model. Fu et al. (2015, 2017a)
applied an ensemble Kalman filter technique to the estima-
tion of ash concentrations in an Eulerian dispersion model
based on flight concentration measurements and satellite es-
timations using idealized experiments and real observations.
Their results showed that both observational sets (flight mea-
surements and satellite mass loads) reduced forecast errors,
which in their particular case were attributed to a wrong
model representation of ash sedimentation processes. One
important issue when using satellite estimates of ash mass
loadings is that observations only provide a 2-D distribution
of ash mass, while models usually require the vertical profile

of ash concentrations. Fu et al. (2017b) presented a modified
approach for comparison between models and observations
in the context of the ensemble Kalman filter that tries to deal
with this limitation.

Uncertainties in the source parameters can be circum-
vented in part by using inverse modeling techniques for the
optimization of these parameters. Eckhardt et al. (2008) im-
plemented a source parameter optimization approach based
on the definition of a cost function that measures the de-
parture of ash concentrations from observed values and the
departure of the estimated parameters from their a priori val-
ues. This allowed for the reconstruction of the full emission
profile using data from different sensors. Stohl et al. (2011),
Kristiansen et al. (2012), Denlinger et al. (2012), Pelley et al.
(2015), and Steensen et al. (2017) discussed further develop-
ments and evaluations of the proposed approach. In particu-
lar, Pelley et al. (2015) describe the operational implementa-
tion of this algorithm at the London Volcanic Ash Advisory
Centre (VAAC). In Chai et al. (2017), the optimal parameters
are found using a quasi-Newtonian minimization approach of
a similar cost function, and Lu et al. (2016) use a similar ap-
proach in the context of an Eulerian model. Finally, Zidikheri
et al. (2017a, b) presented an optimization algorithm based
on a systematic search of the optimal parameter values for
both qualitative and quantitative ash forecasts and evaluated
the performance of the technique for different cases, showing
a positive impact on forecast quality. Wang et al. (2017) per-
form idealized experiments in which a particle filter and an
expectation maximization algorithm are used for the estima-
tion of ash source parameters, obtaining promising results.

The goal of this paper is to contribute to the development
of data assimilation methods to improve quantitative ash
dispersion forecasts. To this end, we propose an ensemble-
based data assimilation system for volcanic ash combining
an ensemble transform Kalman filter (ETKF) (Ott et al.,
2004; Hunt et al., 2007) and the FALL3D ash dispersal
model (Costa et al., 2006; Folch et al., 2009), named ETKF–
FALL3D. This system produces a joint estimation of 3-D
ash concentration and critical ESPs that can improve the
performance of classical ash dispersion forecast strategies.
This paper presents a first analysis of the ETKF–FALL3D
system using different observing system simulation experi-
ments (OSSEs) in which synthetic observations of ash col-
umn mass loadings are simulated and assimilated. The sys-
tem is evaluated under constant and time-dependent ESPs,
and the sensitivity of the system performance to parame-
ter uncertainty, ensemble size, and observation uncertainty
is explored and discussed. Additionally, some impacts of the
Gaussian assumptions underlying the ensemble Kalman fil-
ter in the present case are discussed. A description of the
methodology is presented in Sect. 2, the experimental setup
of the sensitivity experiments is described in Sect. 3, the re-
sults are discussed in Sect. 4, and the final conclusions are
outlined in Sect. 5.
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2 Methodology

2.1 The FALL3D model

FALL3D is an Eulerian atmospheric dispersal model that
solves the advection–diffusion–sedimentation equation for a
set of particle classes (bins), each characterized by a parti-
cle size, density, and shape factor. Given an eruption source
term and meteorological variables, FALL3D solves the 4-D
ash concentration for each particle class, from which the to-
tal and the fine ash column mass loadings are diagnosed by
performing a vertical integration. The meteorological fields
must be furnished offline by a numerical weather predic-
tion (NWP) model forecast or from a reanalysis dataset. The
source term determines the amount of tephra injected to the
atmosphere, its vertical distribution along the eruption col-
umn, and the fraction of mass associated with each particle
bin. This term can be parameterized using different schemes
available in the model for the mass eruption rate (MER) (e.g.,
Mastin et al., 2009; Degruyter and Bonadonna, 2012; Wood-
house et al., 2013) and the vertical mass distribution (e.g.,
Pfeiffer et al., 2005; Folch et al., 2016). For simplicity and
without loss of generality, we will assume here a MER given
by the Mastin et al. (2009) scheme, which depends on the
fourth power of the top height of the eruptive column and
does not account for wind effects, and a Suzuki vertical mass
distribution (Pfeiffer et al., 2005) that is an empirical vertical
ash mass eruption rate distribution that assumes no interac-
tions with the surrounding atmosphere (e.g., the effects of
wind shear or stratification upon the eruptive column); it is
also assumed that the shape of the vertical flow rate is the
same for all particle sizes and is given by

S(z)=
(

1−
z

h
exp

[
A
( z
h
− 1

)])λ
, (1)

where S(z) is the mass eruption rate distribution function, z
is the altitude above the vent, h is the top height of the erup-
tive column, and A and λ are two dimensionless parameters.
Figure 1 shows the sensitivity of the vertical emission pro-
file to different values of h and A. It is important to recall
that h not only controls the maximum height of the erup-
tive column, but also the total mass emitted (Fig. 1a). Pa-
rameter A does not modify the total amount of mass being
emitted but significantly affects the level at which the maxi-
mum emission takes place (Fig. 1b), which can significantly
affect the posterior evolution of the ash plume, particularly
for cases in which there is strong vertical wind shear. The
parameter λ is a measure of how concentrated the emission
is around the maximum (not shown). A previous sensitivity
test (Osores, 2018) has shown that the two FALL3D model
parameters that most affect the model results are the eruption
column height h and the parameter A in the Suzuki distri-
bution. For this reason, these two parameters will be used in
the following sections to define the ETKF–FALL3D system
experiments. The sensitivity of the FALL3D model to these

parameters in terms of the deposit has been documented by,
e.g., Scollo et al. (2008).

2.2 The ETKF–FALL3D system

In operational applications, data assimilation is implemented
sequentially to provide an estimation of the state of the sys-
tem at a series of times in the so-called “data assimilation
cycle”. Each data assimilation cycle consists of two steps: a
first step in which the numerical model is used to provide
an a priori estimation or forecast of the state of the system
and its uncertainty, followed by a second step in which the
prior estimation is combined with observations (which are
also considered uncertain) to obtain a posterior estimation or
analysis. These two steps are repeated sequentially in order
to propagate forward in time information from past observa-
tions.

Let us assume that the state of a system at time t is repre-
sented by a state vector xt that, in our particular case, con-
sists of the values of ash concentration at each model grid
point and for each particle class. In other words, xt is a col-
umn vector with n elements, n being the total number of state
variables in the FALL3D model (i.e., the total number of grid
points times the number of particle bins). For parameter es-
timation, model parameters θ , e.g., those defining the char-
acteristics of the source term, are also considered part of the
state of the system and are thus assumed uncertain. For the
sake of simplicity, we limit the FALL3D source term parame-
ters to the eruption column height h and theA-Suzuki param-
eter, but the methodology that follows can easily be extended
to any other set of model input parameters. The augmented
state vector st at time t is defined as the concatenation of
the state vector xt and the (time-dependent) estimated model
parameters θ ; that is, st = [xt ,θt ] is a column vector with
ns = n+ 2 elements.

In the ensemble Kalman filter the time-dependent uncer-
tainty in the state variables and parameters is estimated using
a Monte Carlo approach through an ensemble of augmented
states. Let us assume that we start at time t − 1 with an en-
semble of initial conditions and model parameters. Then, our
forecast of the state of the system at time t is obtained by
integrating in time the FALL3D model for each ensemble
member:

s
f (i)
t =Mt

(
x
a(i)
t−1,θ

a(i)
t−1

)
, (2)

where Mt represents the FALL3D model operator, which
integrates the model in time for the ith ensemble member
starting from the ith initial conditions (analysis) xat−1 and
fixes the model parameters to θat−1 during the time integra-
tion interval. Note that a persistence model is assumed for
the model parameters (i.e., θft = θ

a
t−1) since no information

about its variations is available yet during the forecast. Fol-
lowing the assumptions of the ensemble Kalman filter, the
joint a priori probability distribution of the augmented state
at time t is assumed Gaussian, with a mean and a covariance
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Figure 1. Vertical mass distribution for different (a) eruptive column top heights and (b) A Suzuki parameters.

matrix estimated from the ensemble of forecasts:

s
f
t = k

−1
k∑
i=1

s
f (i)
t , (3)

Pft = (k− 1)−1Sft Sft
T
, (4)

where sft is the ensemble forecast mean, Pft is the ensem-
ble forecast covariance matrix (a square matrix of dimension
ns×ns), and Sft is the ensemble forecast perturbation matrix

whose ith column is computed as Sf (i)t = sf (i)t − sf (i)t .
Note that the integration of the ensemble in time propa-

gates the uncertainty on the initial conditions and parame-
ters at time t − 1 into the future in order to provide a time-
dependent estimation of the forecast uncertainty. This is a
key feature that makes these methods particularly appealing
for the estimation of uncertain model parameters (e.g., Aksoy
et al., 2006; Ruiz et al., 2013) and for an accurate quantifi-
cation of concentration. At the analysis step a set of observa-
tions is available that is related to the true state of the system
by the following expression:

yt =H
(
xtrue
t

)
+ εt , (5)

where yt is anm-sized column vector containing the value of
the m observations at time t , and xtrue is the true model state
(assumed to be unknown). H is a (usually nonlinear) trans-
formation that maps the state variables (i.e., ash concentra-
tions for different particle sizes) into the observed quantities

(e.g., cloud column mass load), and the vector ε represents
the error in the observations. This error is typically assumed
to be a zero-mean Gaussian random variable with covariance
matrix R (dimensions of m×m). The errors in the observa-
tions are assumed to be uncorrelated in time and indepen-
dent of the state of the system. Under these assumptions, the
information provided by the forecast and the observations
can be combined to obtain an estimation of the augmented
state that minimizes the root mean square error (RMSE) with
respect to the unknown truth (e.g., Kalnay, 2003; Carrassi
et al., 2018):

sat = s
f
t +Pft HT

t (HtP
f
t HT

t +R)−1
(
y
f
t −H(xft )

)
, (6)

where sat is the a posteriori estimation of the augmented state
(i.e., the analysis), and Ht is the tangent linear of the observa-
tion operator. The factor Pft HT

t (HtP
f
t HT

t +R)−1 is usually
referred to as the Kalman gain. The Kalman filter equations
also provide a way to estimate the uncertainty of the analy-
sis. After the assimilation of the observations, the augmented
state covariance matrix is updated to

Pat = (I−KHt )P
f
t , (7)

where Pat is the posterior or analysis-augmented state covari-
ance matrix. Note that Eqs. (6) and (7) can be used to obtain
an ensemble of analyses for the state variables, and the pa-

rameters whose ensemble mean is equal to sft and the pertur-
bations are sampled from a Gaussian distribution with zero
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Table 1. Summary of the notation used in the paper, with the nomenclature for the ETKF method and its correspondence to the experiments
discussed in this work. Here, n is the total number of grid points times the number of particle classes in the FALL3D model,m is the number
of observations at time t , p is the number of parameters, and k is the number of ensemble members.

Nomenclature Dimension Description ETKF–FALL3D

Mt – Nonlinear model FALL3D model

yot m× l Observations Satellite retrieval of ash mass loading

εt m× 1 Observational error Ash mass loading estimation error

x
f
t n× k A priori or forecast ensemble Ensemble forecast of 3-D concentration

x
f
t n× 1 Background mean Mean of 3-D concentration short-term forecast

σ
f
t p× k A priori or forecast set of parameters A priori parameters ensemble used in the FALL3D

forecast
y
f
t m× k Forecast into the observational space FALL3D ash mass loading ensemble forecast

y
f
t m× 1 Forecast mean Ash mass loading ensemble forecast mean

xat n× k A posteriori or analysis ensemble Ensemble analysis of 3-D concentration

xat n× 1 Analysis mean Mean 3-D concentration analysis

σ at p× k A posteriori or analysis set of parameters Ensemble of optimized set of parameters

Ht – Observational operator Transformation function from concentration to ash
mass loading

Ht m× n Tangent linear observation operator

Pft n× n Background error covariance matrix 3-D concentration forecast error covariance matrix

Pat n× n Analysis augmented state error covariance
matrix

3-D concentration analysis error covariance matrix

Rt m×m Observational error covariance matrix Ash mass loading error covariance matrix

s
f
t ns × 1 Augmented state vector Concatenation of the state vector xt and the esti-

mated model parameters σft
Sft ns × ns Ensemble forecast perturbation matrix

mean and covariance matrix equal to Pat . These equations
can be difficult to solve explicitly for high-dimensional sys-
tems due to the large size of Pt and Rt , but several methods
have been proposed to address this issue and to implement
the ensemble Kalman filter in high-dimensional systems. In
the present work, we use the ETKF approach, which solves
the ensemble Kalman filter equations in a subspace defined
by the ensemble members. Details about the equation that
arises from this particular implementation can be found in
Hunt et al. (2007), but a summary is given in Appendix A.
Table 1 also presents a summary of the notation and dimen-
sions associated with the different quantities previously dis-
cussed. One of the main advantages of this approach is that
finding the analysis ensemble mean requires inverting a k×k
matrix, which is significantly cheaper than inverting the n×n
matrix for the case in which k� n (which is usually the case
for high-dimensional applications of the filter).

The process is schematically shown in Fig. 2. The cycle
starts with an estimation of the mean parameters; assum-

ing they have a Gaussian distribution, k random samples are
taken. Each parameter sample is used in one of the ensemble
members integrated with the dispersion model. When an ob-
servation is available, it is combined with the ensemble fore-
casts using the ETKF equations. From this combination an
ensemble of analysis is obtained with a set of optimized pa-
rameters that also has a Gaussian distribution. Then the next
cycle starts from the ensemble of analysis and the set of opti-
mized parameters to produce a new ensemble forecast. When
a new observation is available, the assimilation method is ap-
plied, and the cycle continues.

3 ETKF–FALL3D experimental setup

To explore the capability of the ETKF–FALL3D system we
use an OSSE approach, in which a long model integration
is performed and regarded as the true evolution of the ash
cloud. This model integration will be referred to as the nature

www.geosci-model-dev.net/13/1/2020/ Geosci. Model Dev., 13, 1–22, 2020
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Figure 2. ETKF–FALL3D data assimilation system scheme for volcanic ash.

run. Observations are simulated from the nature run and then
assimilated with the ETKF–FALL3D system. The June 2011
Puyehue-Cordón Caulle eruption (Osores et al., 2012; Collini
et al., 2013) has been selected for the generation of the nature
run.

3.1 Ash mass loading observation simulations

The nature run and observation simulation begin at
18:00 UTC on 4 June 2011 and last for 10 d up to 00:00 UTC
on 15 June, covering the domain shown in Fig. 3 with a
model horizontal resolution of 0.23◦ and a vertical resolu-
tion of 200 m. The model top is located at 20 km above the
ground. The volcanic vent is located at 40.52◦ S–72.15◦W at
an altitude of 1420 m a.s.l.

The particle total grain size distribution (GSD) is repre-
sented by 12 classes with diameters between 2 mm (−1φ)
and 1 µm (10φ) and densities ranging from 400 for the larger
particles to 2100 kg m−3 for the smaller ones (Bonadonna
et al., 2015). The vertical distribution of the source is param-
eterized using the Suzuki scheme considering λ= 5, the set-
tling velocity model is that of Ganser (Ganser, 1993), and the
vertical and horizontal turbulent diffusion are parameterized
by the similarity (Ulke, 2000) and Community Multiscale
Air Quality (CMAQ) (Byun and Schere, 2006) schemes, re-
spectively. The meteorological fields are obtained from the
Global Forecasting System (GFS) analysis with a horizontal

resolution of 0.5◦, a temporal resolution of 6 h, and 27 con-
stant pressure vertical levels.

The simulated observations represent ash mass column
load (vertically integrated ash mass per unit area) estimates
retrieved from satellite radiances (e.g., Prata and Prata, 2012;
Francis et al., 2012; Pavolonis et al., 2013). Simulations of
satellite retrievals are chosen since these observations are
available almost globally and have a high spatial and tem-
poral resolution, making them particularly appealing for the
implementation of operational data assimilation systems. To
represent some of the limitations of current satellite-based
ash mass load retrievals, the simulated observations are avail-
able only where the true load values are between 0.2 and
10 g m−2. The lower bound approximately corresponds to
the minimum mass load that can be retrieved by state-of-
the-art algorithms. Retrievals usually cannot estimate mass
loads over the upper bound because the optical thickness of
the corresponding ash plume is too high (e.g., Wen and Rose,
1994; Prata and Prata, 2012; Pavolonis et al., 2013). The ob-
servational error is assumed to have a random Gaussian dis-
tribution, with a standard deviation of 0.15 of the ash mass
load.

For the sake of simplicity, observations are assumed to be
colocated with the model grid points; we also assume that
observation errors are uncorrelated (i.e., R is diagonal) and
that observations are unbiased. All observations are gener-
ated assuming a clear-sky condition both above and below

Geosci. Model Dev., 13, 1–22, 2020 www.geosci-model-dev.net/13/1/2020/
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Figure 3. Domain used in the ETKF–FALL3D sensitivity tests (red
square).

the ash cloud. Two nature runs were generated to evaluate the
ETKF–FALL3D system: one with constant emission profiles
and another with time-varying emission profiles.

3.1.1 Constant emission profile

This nature run simulation considers a source term that re-
mains constant during the entire simulated period, with an
eruption column height of 8.5 km above the vent and an A
Suzuki parameter of 5.5 (Fig. 4). Figure 5a and c show the
ash mass loading from the nature run and the observation
simulation on 7 June at 12:00 UTC for illustrative purposes.
The addition of observational error to the nature run does
not significantly affect the spatial distribution or the location
and intensity of the maximum concentration. The number of
available observations (which depends on the thresholds de-
scribed in the previous section) is time-dependent (ranging
from 27 to 52 grid point observations) and, in this partic-
ular case, is primarily affected by the atmospheric circula-
tion, which produces variations in the 3-D ash concentration
within the model domain.

Figure 4. Nature run parameter time series for the constant (solid
lines) and variable emission profiles (dashed lines) for h (black
lines) and A Suzuki (red lines).

3.1.2 Variable emission profile

In this experiment, h and A Suzuki are time-dependent
(Fig. 4). In order to represent a realistic variability of the
source parameters, the h evolution corresponds to the esti-
mated heights during the 2011 Puyehue-Cordón Caulle erup-
tion (Osores et al., 2014). Since the A Suzuki parameter can-
not be directly estimated, the evolution of this parameter is
simulated using an auto-regressive model (Fig. 4).

In Fig. 5b and d, the ash mass loading fields for 7 June at
12:00 UTC from the nature run and the observation simula-
tion are shown. As has been shown for the constant parame-
ter case, the observational error does not significantly affect
the spatial distribution of the plume. In this experiment, the
number of observations assimilated depends on the emission
profile as well as the wind field, and it can range from 15 (on
11 June at 06:00 UTC) to 86 (on 11 June at 18:00 UTC).

3.2 Data assimilation experimental setup

In the data assimilation experiments performed in this work,
the simulated observations are assimilated every 6 h. The
number of ensemble members in the experiments is set to
32 (unless stated otherwise). In most experiments source pa-
rameters are assumed to be unknown and estimated within
the data assimilation cycle. The model grid, boundary condi-
tions, and all other model parameters and configuration op-
tions are set as in the nature run. The ensemble at the first
assimilation cycle is initialized using zero ash concentrations
for all members and a set of parameters that are sampled ran-
domly from a Gaussian distribution whose mean and vari-
ance for each experiment are detailed below. The relaxation
to prior spread (RTPS; Whitaker and Hamill, 2012) inflation
approach, with a parameter of α = 0.5, is applied to the state
variables to reduce the impact of sampling error. For the pa-

www.geosci-model-dev.net/13/1/2020/ Geosci. Model Dev., 13, 1–22, 2020
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Figure 5. Ash mass loading on 7 June at 12:00 UTC for (a) the nature run with constant parameters, (c) the run with observational error
and constant parameters, the (b) nature run with time-dependent parameters, and (d) the run with observational error and time-dependent
parameters. Ash mass loading values outside the 0.2–10.0 g m−2 interval are in grey.

rameters, the ensemble spread is inflated back to its origi-
nal value after assimilating the observations (similar to the
conditional inflation approach of Aksoy et al., 2006). This
is equivalent to assuming that the parameter uncertainty is
time-independent, thus preventing the parameter ensemble
spread from collapsing. Covariance localization is usually
required to reduce the impact of spurious correlation that re-
sults from the use of small ensemble sizes. The estimation of
small correlations (e.g., between locations that are far apart
from each other) is usually strongly affected by sampling
noise; this is why estimated covariances are usually forced
to decay with distance. Since the domain used in the data as-
similation experiments is small, the impact of spurious corre-
lations between distant grid points is less significant. For this
reason, no covariance localization is used in the estimation
of the state variables or the parameters. However, is impor-
tant to keep in mind that if the system is extended to larger

domains, using covariance localization will highly improve
its performance.

Given that in the ensemble Kalman filter the distribution
of ash concentration and parameters is assumed to be Gaus-
sian, a negative ash concentration or nonphysical parame-
ter values can result from the assimilation of observations.
These nonphysical solutions must be corrected before using
the analysis ensemble as initial conditions for the next en-
semble forecast cycle. For ash concentration, negative values
are turned into zero concentrations. In the case of eruption
source parameters, nonphysical values are checked individu-
ally for each ensemble member and replaced with a random
realization from a Gaussian distribution with the same mean
and standard deviation as the analysis ensemble. If the ran-
domly generated value is outside the physically meaningful
range for the parameter, the process is repeated until the ran-
domly generated value is within the physically meaningful
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range. The physically meaningful range for model parame-
ters is set to 0–20 km and 0–15 for h and A Suzuki, respec-
tively. The number of grid points and ensemble members
with estimated concentrations below −1.0× 10−4 gm−3 is
usually below 15 % of the grid points and ensemble mem-
bers for which the concentration has been updated. This pro-
portion decreased with increasing ash concentration as well
as with ensemble spread. Estimated parameters for individ-
ual ensemble members fall outside the physical meaningful
range less than 10 % of the times, also depending on how
close to the boundaries the true parameters are and how large
the parameter ensemble spread is.

One of the main hypotheses of the Kalman filter is that
state variables and parameters are approximately linearly
correlated with the observations. This is not true for the h
parameter since in the Mastin et al. (2009) emission scheme
the source strength is proportional to the fourth power of h.
For this reason, instead of estimating h, we estimate h4 so
that the estimated parameter is more linearly correlated with
the observations.

In this work, several experiments are performed to study
the convergence of the filter and its sensitivity to some key
parameters. Two experiments are performed using the con-
stant parameter nature run to assess filter convergence. The
first experiment starts with source parameters that are higher
than the true value and will be referred to as CONSTANT-
UPPER; the second starts with an underestimation of the
source parameters and will be referred to as CONSTANT-
LOWER. The initial parameter spread for h and A Suzuki
is 500 and 0.5 m, respectively, and is the same for both ex-
periments. These experiments are compared against an ex-
periment in which parameters remain constant at their initial
value (CONSTANT-NOEST) and against an experiment in
which the parameters are constant and their ensemble mean
is equal to the true value (CONSTANT-TRUE).

The second set of experiments is based on the nature run
with time-dependent parameters. An estimation experiment
that uses the same parameter ensemble spread as in the pre-
vious experiments is performed and will be referred to as
the CONTROL experiment. To evaluate the impact of per-
forming parameter estimation in the time-dependent param-
eter context, an experiment in which the parameters are kept
constant at the time average of the true parameters is also
presented (CONTROL-NOEST).

To quantify the sensitivity of the ETKF–FALL3D system
to the parameter ensemble spread, two additional experi-
ments are performed: one in which the ensemble spread is
larger than in the CONTROL experiment (HI-SPREAD), for
which the spread in h and A Suzuki is 2000 and 4 m, respec-
tively, and another experiment in which the ensemble spread
is lower than in the CONTROL run (LOW-SPREAD), for
which the spread in h and A Suzuki is 100 and 0.1 m, re-
spectively. All the other configuration settings are as in the
CONTROL experiment.

To explore the impact of modifying the ensemble size, an
experiment with ensemble sizes of 8 (ENS-8) and 16 (ENS-
16) is presented for which all other configuration settings are
equal to the CONTROL run experiment. Finally, the impact
of observation error is assessed in two experiments with ob-
servation errors that are 30 (OBS-30) and 40 % (OBS-40) of
the true total mass concentration. All presented data assimi-
lation and parameter estimation experiments are summarized
in Table 2, including the statistical properties of the initial
parameter ensemble. Finally, a set of simulation experiments
is carried out using a larger domain to evaluate the impact
of the optimized parameters upon the simulation of the ash
cloud farther from the vent.

3.3 Performance metrics

The evaluation of the FALL3D-ETKF system is achieved by
comparing the 3-D ash concentration forecast (and analysis)
against the nature run and also by measuring the consistency
between the estimated and the actual forecast uncertainties.
The comparison is based on the RMSE, error bias, and the
ensemble spread of either the forecast or the analysis, which
are given by the following expressions:

RMSE=

√√√√N−1
N∑
i=1

(
xf,i − xt,i

)2
, (8)

BIAS=N−1
N∑
i=1

(
xf,i − xt,i

)
, (9)

SPREAD=

√√√√N−1
N∑
i=1

(
k−1

k∑
j=1

(
x
(j)

f ,i − xf,i

)2
)
, (10)

where xf,i is either the forecast or analysis ensemble mean
ash concentration at time and location i and x(j)f,i , and xt,i
represents their corresponding values for the j th ensemble
member and the nature run, respectively. Spatial or temporal
averages are obtain by summing over i.

4 Results

4.1 Constant emission profile experiments

In these experiments, we explore the impact of data assimi-
lation and parameter estimation in the steady parameter sce-
nario. Figure 6 shows the ensemble mean and the spread of
h and A Suzuki. After the first assimilation cycle, both pa-
rameters start to converge rapidly to values close to the true
ones, with mean errors below 500 and 1 m, respectively. The
convergence of h is faster, likely due to the strongest sensitiv-
ity of forecasted ash concentrations to column height in the
surroundings of the source. The two experiments consider-
ing different initial parameter values (CONSTANT-UPPER
and CONSTANT-LOWER) converge to values close to the
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Table 2. Summary of the main parameters that distinguish the different experiments described in the text.

Name Ens. size h ini. (m) A ini. h spread (m) A spread Par. est. Obs. err. (%)

CONSTANT-UPPER 32 11.000 7.0 500.0 2.0 y 15
CONSTANT-LOWER 32 3.000 2.0 500.0 2.0 y 15
CONSTANT-NOEST 32 3.000 2.0 500.0 2.0 n 15
CONSTANT-TRUE 32 8.500 5.5 500.0 2.0 n 15
CONTROL 32 11.000 7.0 500.0 2.0 y 15
CONTROL-NOEST 32 11.000 7.0 500.0 2.0 n 15
HI-SPREAD 32 11.000 7.0 2000.0 4.0 y 15
LOW-SPREAD 32 11.000 7.0 100.0 0.1 y 15
ENS-16 16 11.000 7.0 500.0 2.0 y 15
ENS-8 8 11.000 7.0 500.0 2.0 y 15
OBS-30 32 11.000 7.0 500.0 2.0 y 30
OBS-40 32 11.000 7.0 500.0 2.0 y 40

Figure 6. Optimized parameters as a function of time in the CONSTANT-UPPER (blue line), CONSTANT-LOWER (red line), CONSTANT-
TRUE (black line), and CONSTANT-NOEST (green line) experiments. The shading surrounding the CONSTANT-UPPER and CONSTANT-
LOWER estimated values represents ± 1 standard deviation; (a) h parameter and (b) A Suzuki parameter.

true parameter, indicating that the parameter estimation tech-
nique is robust in finding the correct values of parameters
regardless of ensemble initialization. As observed in Fig. 6,
both parameter estimation experiments tend to sub-estimate
the values of h and to slightly overestimate the values of A
Suzuki. Figure 6 also shows the parameter ensemble spread.
In these experiments, the ensemble almost always contains
the true parameter value, meaning that the parameter uncer-
tainty is well captured by the ensemble. However, it should
be noted that, in these experiments, the ensemble spread of
the model parameters is prescribed a priori to a value that
may not be the optimal one under different conditions (e.g., if
the optimal parameters are time-dependent or if other sources
of uncertainty, like errors in the atmospheric circulation, are
present). Sensitivity experiments to the parameter ensemble
spread will be discussed in the following sections.

Figure 7a shows the time evolution of the domain-
averaged RMSE for the 3-D total ash concentration forecasts.
The RMSE of the parameter estimation experiments is com-
pared against an experiment in which parameters are not es-
timated and are fixed at the initial value of the CONSTANT-
UPPER experiment (CONSTANT-NOEST) and against an
experiment in which the parameter ensemble is centered
at the true value of the source parameters (CONSTANT-
TRUE). Parameter estimation experiments show similar re-
sults in terms of the 6 h forecast errors, indicating the ro-
bustness of the convergence to the optimal parameter val-
ues. Moreover, both parameter estimation experiments show
ash concentration errors that are similar to the one obtained
in the CONSTANT-TRUE experiment and are much lower
than the errors obtained in the CONSTANT-NOEST exper-
iment, clearly showing the advantage of performing data-
assimilation-based source parameter estimation. Figure 7b

Geosci. Model Dev., 13, 1–22, 2020 www.geosci-model-dev.net/13/1/2020/



S. Osores et al.: ETKF–FALL3D v1.0 11

shows the spatially averaged ash concentration ensemble
spread. One way to assess if the current parameter ensemble
spread is well tuned is to compare the ash concentration fore-
cast error and spread. If these are similar then we can assume
that our uncertainty is well represented in the ensemble. In
this case, the uncertainty in the ash concentration is mainly
associated with the uncertainty in the source parameters. As
observed, the spread values are close to the RMSE values in
Fig. 7a, which indicates that after convergence of the param-
eters, the ensemble spread closely represents the magnitude
of the errors.

Figure 7c shows the horizontal and time-averaged error
bias for the total ash concentration as a function of height.
The first 2 d have been excluded because they are considered
part of the spin-up time of the filter. This figure shows that
biases associated with the estimation experiments are much
lower than for the CONSTANT-NOEST experiment, show-
ing once again the advantage of optimizing the source pa-
rameters. The CONSTANT-UPPER, CONSTANT-LOWER,
and CONSTANT-TRUE experiments show a small system-
atic underestimation of the maximum concentrations and an
overestimation above and below the location of the maxi-
mum. Note that the bias is slightly lower in the parameter es-
timation experiments with respect to the CONSTANT-TRUE
experiment.

The fact that a biased parameter ensemble (i.e., the under-
estimation of h observed in Fig. 6a) produces a less biased es-
timation of ash concentrations (Fig. 7c) may be related to the
nonlinear relationship between h and the total mass emission
at the source. Since the emitted mass depends on h4, positive
perturbations in h are associated with a much larger emission
rate and are thus farther from the observations than ensem-
ble members with negative perturbations in h. This creates a
bias in the estimation of the concentrations because, even if
the ensemble is centered at the true h value, positive pertur-
bations are farther from observations than the negative ones,
and therefore the ensemble mean tends to overestimate con-
centrations. ETKF tries to compensate for this effect by con-
verging to a slightly biased parameter set, which reduces the
error bias and the RMSE.

As observed in Fig. 7d, the analysis error in ash concentra-
tion is below the forecast error. This indicates that the ETKF
method is efficient in reducing the error in the 3-D concentra-
tion field based on the information provided by a 2-D obser-
vation. This is a remarkable result in a context in which most
observations are 2-D, whereas operational requirements are
3-D. This finding will be the basis for using the analysis as a
better diagnostic of the state of the plume to improve the fore-
casts. The reason behind this lies in the structure of the fore-
cast error covariance matrix, which is estimated from the en-
semble of forecasts. This matrix contains information about
the covariances between mass loading (which is the observ-
able quantity) and the concentration at different heights from
which the mass loading is obtained and which are not directly
observed. In this work, reliable covariances between 3-D ash

concentrations and mass loadings are obtained by taking into
account the uncertainties associated with the source parame-
ters.

4.2 Time-dependent emission experiments

These experiments use the observations simulated from the
nature run with time-varying parameters (Fig. 4). The pa-
rameter ensemble is initialized with a mean h of 11 km, a
mean A Suzuki of 7, and standard deviations of 0.5 and
2.0 km, respectively. Figure 8 shows the evolution in time
of the optimized parameter ensemble as well as their corre-
sponding true values, showing a good agreement. The esti-
mation of h seems to be particularly accurate and can detect
rapid variations in the eruptive column height, with RMSE
values lower than 200 m throughout the experiment. For the
A Suzuki parameter, the time evolution is not reproduced so
accurately. There are also two sudden jumps in the estima-
tion of A Suzuki, indicating a less well-constrained parame-
ter value. These differences in the behavior of the estimated
h and A Suzuki may be due to the higher sensitivity of the
ash distribution to the eruptive column height in comparison
with the A Suzuki parameter. The jumps in the estimated A
Suzuki occur during periods of fast changes in h, suggesting
that when h is not well estimated, A Suzuki may be modified
in an attempt to compensate for errors in h.

Figure 9 shows the RMSE of the forecast for the 3-D to-
tal ash concentration. Errors in this case vary strongly with
time, with larger errors corresponding to the instants in which
h is larger, leading to stronger ash mass emission at the vent
and consequently larger ash concentrations in the surround-
ings of the vent. The ensemble spread (Fig. 9b), although
smaller than the error (indicating an under-dispersive ensem-
ble), changes accordingly with more spread during the peri-
ods in which the emission is higher. These changes in the en-
semble spread are a consequence of the relationship between
h and mass emission at the vent. Since h deviations from the
ensemble mean are almost time-independent, the associated
departures in mass emission are larger during the periods of
higher h, leading to a larger spread in the concentration field.

Figure 9d shows the spatially averaged reduction in the
RMSE for the total ash concentration between the forecast
and the analysis. The RMSE is reduced between the forecast
and the analysis at almost all vertical levels, indicating that
the vertical covariance structure between mass loadings and
ash concentrations at different levels is well estimated, lead-
ing to accurate 3-D ash concentration estimations.

In order to assess the impact of treating the parameters
as a time-dependent variable, this experiment is compared
with an experiment in which data assimilation is performed
but only the ash concentration field is updated. In this case,
source parameters are kept constant in time at a value equal
to the time average of the true parameters (CONTROL-
NOEST, Fig. 8). This value is chosen to obtain a solution
that is as close as possible to the one obtained with the
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Figure 7. (a) Spatially averaged forecasted total ash concentration RMSE, (b) spatially averaged forecasted total ash concentration ensemble
spread, (c) spatially averaged forecasted total ash concentration bias, and (d) the difference between the 6 h forecast and analysis total
ash concentration RMSE for the CONSTANT-UPPER (blue line), CONSTANT-LOWER (red line), CONSTANT-TRUE (black line), and
CONSTANT-NOEST (green line) experiments. Panels (a), (b), and (c) are computed from the 6 h ensemble forecast (all values: 10−3 g m−3).

time-dependent parameters. Figure 9 shows that the forecast
RMSE and bias in the 3-D ash concentration are almost al-
ways larger in the CONTROL-NOEST experiment with re-
spect to the CONTROL experiment. The error in the CON-
TROL and CONTROL-NOEST experiments becomes simi-
lar around day 3 and after day 8 because at those times in-
stants the source parameters are close to each other (Fig. 8).
Moreover, the ensemble spread for the CONTROL-NOEST
experiment is almost constant in time and, because of that,
changes in the forecast uncertainty are not captured (Fig. 9b).
This is because time variations in the ensemble spread are
mainly associated with changes in the mean values of pa-
rameters. These experiments suggest that performing data as-

similation for the estimation of 3-D ash concentrations is not
sufficient to properly constrain 3-D ash concentration val-
ues and that source parameters also have to be taken into ac-
count, particularly close to the source where these parameters
rapidly impact concentrations.

As an example, Fig. 10 shows the ensemble forecast mean
for the CONTROL and CONTROL-NOEST experiments
and the nature run at FL200 at the 12th assimilation cy-
cle. The ash concentration pattern at this particular level is
well represented by the simulation that estimates the source
parameters, whereas in the CONTROL-NOEST experiment,
there is a significant underestimation of the concentrations
due to the underestimation of the column height at this par-
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Figure 8. Optimized parameters as a function of time in the CONTROL (blue line) and CONTROL-NOEST (red line) experiments. The
shading surrounding the estimated values represents ± 1 standard deviation; (a) h parameter and (b) A Suzuki parameter. The black line
indicates the value of the parameters in the true run.

ticular time. Note that data assimilation is being performed
to correct the 3-D ash concentrations in both experiments.

4.3 Sensitivity experiments

This section discusses the sensitivity of the analysis and the
forecast to the parameter ensemble spread, the ensemble size,
and the observation uncertainty. The purpose is to identify
the potentially more important tuning parameters for the op-
timization of the system and how robust the system is with
respect to errors in observations, which are known to exist in
satellite-based ash mass loading estimations.

To explore the sensitivity to the parameter ensemble
spread, the experiments CONTROL, HI-SPREAD, and
LOW-SPREAD with different parameter spreads (Table 2)
are compared. Figure 11 shows the estimated h obtained
in these experiments as well as the total ash concentration
RMSE and bias. As observed, the CONTROL experiment
gives a more accurate estimation of h and the minimum
RMSE and bias. When the parameter ensemble spread is
larger than in the CONTROL experiment, parameter values
are systematically underestimated. As previously discussed,
this can be explained by the nonlinear dependence between
h and the total emitted mass. However, what is relevant from
this experiment is that increasing the ensemble spread de-
grades the quality of the estimation and increases the im-
pact of nonlinearities. Higher dispersion in h increases the
magnitude of positive h perturbations, leading to a larger
error bias, particularly above and below the maximum con-
centration (Fig. 11c). In the case of the LOW-SPREAD ex-
periment, results are closer to the CONTROL experiment.
However, this experiment shows a slower convergence with
larger h estimation errors during the first days of the ex-

periment. Slower convergence or a lack of convergence is
expected when the parameter uncertainty is underestimated.
In this case, the ETKF does not allow for large corrections
in the parameter values based on the observations, basically
because the error in the parameters is assumed to be small.
These experiments show that the system is particularly sensi-
tive to the parameter ensemble spread that has to be specified
a priori. Moreover, in these idealized experiments, the opti-
mal parameter ensemble spread is determined by the uncer-
tainty in the observations and with no information regarding
the changes in the true parameters in time.

As discussed in Sect. 4.1, parameters are estimated based
on their covariance with the observed quantities. In the
ensemble-based data assimilation methods, these covari-
ances are estimated directly from the ensemble, so they can
be affected by sampling errors. To assess the impact of these
sampling errors on the analysis, quality assimilation exper-
iments with different ensemble sizes have been performed.
Three experiments with 8, 16, and 32 ensemble members are
presented (ENS-8, ENS-16, and CONTROL, respectively).
Figure 12 shows the results in terms of h estimation and total
ash concentration RMSE and bias. The CONTROL experi-
ment shows a more accurate h estimation and consistently
lower RMSE and bias values. However, the results are not
very sensitive to the size of the ensemble. The lack of sen-
sitivity to the ensemble size might be surprising, particularly
considering that no spatial localization is being used in order
to reduce the impact of sampling errors. However, note that in
this case, the only source of uncertainty in the system comes
from the uncertain parameters. Based on this, uncertainties
have to be constrained in two dimensions. This is confirmed
by the strong covariances that exist between the parameters
and ash concentration within the domain (not shown). This
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Figure 9. As in Fig. 7 but for the experiments CONTROL (blue line) and CONTROL-NOEST (red line; all values: 10−3 g m−3).

effective low dimensionality is reinforced by the fact that the
domain is small and close to the source, and, because of that,
the ash concentration at most grid points is strongly corre-
lated with the value of the uncertain source parameters.

The last sensitivity experiment looks into the issue of ob-
servation errors in satellite retrievals of mass loadings. In the
experiments presented so far, the standard deviation of the
observation errors has been assumed to be 15 % of the mass
loading in the nature run. However, in real cases, uncertain-
ties associated with mass loading estimations can be larger
than that. Two additional experiments are performed to ex-
plore the impact of the magnitude of the observation errors
on the estimation of source parameters and total ash con-
centrations with an observation standard deviation of 30 %
(OBS-30) and 40 % (OBS-40) of the true mass loading value.
Results from these experiments are presented in Fig. 13. As

expected, the best results are obtained with the lowest ob-
servation error. However, one interesting result is that as the
observation error increases, estimated h values are lower,
eventually leading to substantial underestimations such as the
ones seen for OBS-40 during the first days of the experiment.
Moreover, this systematic underestimation of h produces an
underestimation of the total ash concentrations, as is visible
in the bias profiles (Fig. 13c). Under the hypothesis of the
ensemble Kalman filter, an increase in the observation error
leads to an increase in the RMSE of the estimation. How-
ever, in this case, the systematic component of the error is
also increased. This behavior is probably a consequence of
the nonlinear effects arising from the nonlinear relationship
between h and the ash emission rate that has been previously
discussed.
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Figure 10. (a) Nature run ash concentration at flight level 200 (shaded, 10−3 g m−3); (b) as in (a) but for the 6 h forecast of ash concentration
initialized from the CONTROL analysis experiment; (c) as in (b) but for the CONTROL-NOEST experiment, corresponding to the 12th
assimilation cycle.

Figure 11. (a) Estimated h as a function of time for the HI-SPREAD (red line), CONTROL (blue line), and LOW-SPREAD (green line). The
shading surrounding the estimated values represents ± 1 standard deviation, and the black dashed line indicates the true parameter value.
(b) Spatially averaged total ash concentration 6 h forecast RMSE as a function of time (10−3 g m−3). Line color code as in (a). (c) Temporally
averaged 6 h forecast bias as a function of height (10−3 g m−3). Line color code as in (a).

4.4 Ash concentration simulations in an extended
domain simulation

The experiments discussed so far have been performed in a
relatively small domain surrounding the vent. In most appli-
cations, however, it is expected that forecasts over larger do-
mains are required. In this section, we explore the adequacy
of the parameter estimation approach to generate a good esti-
mation of ash dispersion over larger domains in an idealized
context in which the atmospheric flow is perfectly known.
For this purpose, a nature simulation over a larger domain
is performed. This nature run is forced with the same evo-
lution as parameters of the time-dependent parameter nature
run and spanning the same period.

To see if the estimated parameters can be used to recon-
struct the ash cloud far from the source, the estimated param-
eters are used to produce a simulation of the ash cloud over
a larger domain. At each time the source parameter values
in this simulation are taken from the CONTROL run param-
eter ensemble mean. This simulation will be referred to as
CONTROL-LD. Figure 14a shows the results of comparing
the ash mass loading above 0.2 gm−2 from the experiment
forced with the estimated parameters against the nature run.
The comparison of these categorical variables shows that hits
(i.e., grid points in which mass loadings are over the selected
threshold for both the simulation and the nature run) prevail,
with a lower number of false alarms and misses (i.e., grid
points in which the simulation is over the threshold and the
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Figure 12. As in Fig. 11 but for the experiments CONTROL, ENS-16, and ENS-8.

Figure 13. As in Fig. 11 but for the experiments CONTROL, OBS-30, and OBS-40.

nature is not or vice versa, respectively). We note that both
ash clouds are very close to each other, even far from the
source, indicating that the estimated parameters are sufficient
for the reconstruction of the ash plume in this ideal case.

To see if the CONTROL-LD experiment can be used to
initialize short-range ash concentration forecasts over the
larger domain a forecast is initialized using the CONTROL-
LD ash concentrations as initial conditions and the CON-
TROL parameter ensemble mean as source parameters. Note
that in this case, parameters remain constant during the fore-
cast. Figure 14a and b show the 12 and 24 h forecast lead
times initialized on 7 June at 12:00 and 00:00 UTC, respec-
tively. There is a good agreement between forecasts and the
nature run. For larger lead times there are more false alarms
and misses as expected. This suggests that initializing a fore-
cast from a long run forced with the optimized parameters
can be a cost-effective strategy to generate short-lead-time
ash concentration forecasts over a relatively large domain.

Although these results are encouraging, it should be taken
into account that in more realistic situations, other sources of
uncertainty (e.g., uncertainty in the flow or model errors) can
significantly affect the evolution of the ash plume far from
the source. In this case, the forecast quality can suffer from
the estimation of the 3-D ash concentration over the entire
domain based on the assimilation of mass loading observa-
tions.

5 Summary and conclusions

The estimation of time-dependent source parameters has
been successful within the OSSE context. The ensemble not
only produces an estimation of the covariances between the
observed variables and the parameters but also provides a
time-dependent estimation of the forecast uncertainty that re-
sembles the time evolution of the forecast errors. The strong
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Figure 14. Ash mass loading above 0.2 g m−2 comparison between the ensemble mean optimized parameter run, the 12 h forecast, and the
24 h forecast against the nature run over a larger domain, verifying on 8 June at 00:00 UTC (see the text for details).

time variability of the ensemble spread is mainly associated
with the relationship between column height and emitted
mass.

Sensitivity experiments have been conducted to investigate
how the parameter ensemble spread, the ensemble size, and
the observation errors affect the results. The parameter en-
semble spread produces a significant impact on the quality of
the estimated concentrations and parameters. Larger ensem-
ble spreads lead to stronger biases, both in concentrations
and parameters, whereas lower ensemble spreads produce an
overconfident ensemble and slower converge rates that de-
grade the estimation results. It is important to note that the
optimal parameter ensemble spread can depend on the time
variability of the estimated parameters and other sources of
uncertainty like errors present in the observations and the
model. The sensitivity to the ensemble size revealed that,
even for this low-dimensional estimation problem, ensemble
sizes up to 32 members show some improvement with re-
spect to ensembles of 16 and 8 members, although the impact
of increasing the ensemble size is smaller than the impact as-
sociated with changes in the parameter ensemble spread.

The sensitivity to the observation errors shows a particular
behavior, with an increase in systematic errors both in the pa-
rameters and in the concentrations with increasing observa-
tional errors. When observation errors reach 40 % of the true
ash loadings, the estimated parameters fail to converge dur-
ing the first days of the experiment, leading to significantly
larger errors in the ash concentration forecasts.

The experiments presented in this work are limited to a
small domain surrounding the vent. Experiments on a larger
domain show that the optimized parameters can be used to
force an ash dispersion simulation that can reproduce the ash
cloud properties far from the vent as long as the atmospheric
circulation is accurately known. These simulations can be
used to initialize ash dispersion forecasts over a larger do-
main as a computationally cheaper alternative to running a
data assimilation system with covariance localization over a
large domain.

The experiments discussed in this work assume a perfect
model and a perfect meteorological forcing. In real-life ap-
plications, imperfections in the model and the forcing have
a significant impact on the quality of ash dispersion fore-
casts. Previous works have shown that parameter estimation
can be successfully performed in the presence of multiple
sources of model error (e.g., Ruiz and Pulido, 2015). Prelim-
inary experiments introducing errors in the meteorological
forcing suggest that the current system provides a robust es-
timation of the source parameters in the presence of wind
uncertainty. However, this aspect should be further analyzed
in future studies.

Several research directions are needed from this work, in-
cluding the following: (a) the improvement of the ETKF–
FALL3D system through the application of covariance local-
ization, allowing for a more efficient and accurate estimation
of the ash concentrations over larger domains; (b) the inclu-
sion of more uncertainty sources in the design of the filter,
with the uncertainty in the atmospheric flow and the model
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formulation among the most important; (c) the assessment
of the skill of the system in more realistic scenarios using
real observations; (d) a better representation of the uncer-
tainty associated with observations, considering possible co-
variances among observations as well as systematic biases in
the observations; (e) the development of techniques that can
converge to the optimal parameter ensemble spread based on
the information provided by the observations (e.g., Miyoshi,
2011); and (f) the implementation of nonlinear assimilation
approaches (e.g., Bocquet et al., 2010) that can better handle
non-Gaussian error distributions and nonlinear relationships
between the model parameters and the observable quantities.

Code and data availability. The FALL3D model (Costa et al.,
2006; Folch et al., 2009) is available through an open license (http:
//datasim.ov.ingv.it/models/fall3d.html, last access: 7 April 2019).
The ETKF–FALL3D code (Osores et al., 2019) is written in Python.
The code and the required data to run a sample experiment are
available through an open license at https://doi.org/10.5281/zenodo.
3066310 (last access: 7 April 2019). Atmospheric state data from
the Global Forecasting System produced by the National Cen-
ters for Environmental Prediction are available through the Uni-
versity Corporation for Atmospheric Research data archive (https:
//rda.ucar.edu/datasets/ds335.0/, last access: 7 April 2019 NCAR,
2013).
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Appendix A: ETKF formulation

A brief description of the ensemble transform Kalman fil-
ter equations are provided here. See Hunt et al. (2007) for a
derivation of the equations as well as for a detailed discus-
sion of the method. The ETKF approach solves the Kalman
filter equations in the subspace defined by the ensemble per-
turbations (i.e., the departures of individual members from
the ensemble mean). Under this framework, the update in the
ensemble mean can be expressed as a linear combination of
the forecast perturbations as follows:

sat = s
f
t +Sft wat , (A1)

where wat is a vector of weights of dimension k computed as

wat = P̃at (Y
f
t )
TR−1

(
yt − y

f
t

)
. (A2)

Here, Yft is the ensemble perturbation matrix in obser-
vation space, whose ith column is computed as Yf (i)t =

H(xf (i)t )−H(xft ), and P̃at is the analysis covariance matrix
in the subspace spanned by the ensemble members and is
computed as

P̃at =
[
(k− 1)I+ (Yft )

TR−1Yft
]−1

, (A3)

with I being the identity matrix of size k×k. The analysis en-
semble perturbations are obtained as an optimal linear com-
bination of the background ensemble perturbations:

Sat = Sft Wa
t , (A4)

and the weight matrix Wa
t is computed as

Wa
t =

[
(k− 1)̃Pat

]1/2
. (A5)

Finally, the analysis ensemble is obtained as the sum of the
analysis ensemble mean and the analysis perturbations:

s
a(i)
t = sat +Sa(i)t . (A6)

Note also that, in this implementation, the tangent lin-
ear observation operator H is not applied explicitly since
HtP

f
t HT

t is approximated by Yft (Y
f
t )
T . Once the analysis

ensemble for the augmented state is obtained, one can pro-
ceed to the next assimilation cycle.
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