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Abstract
Early warning systems for weather events are becoming widespread as technological capacities develop. For warnings to be 
effective, they must allow enough lead time to deploy protective measures yet the earlier a warning is broadcast the greater 
may be its uncertainty. In dichotomous warning systems (i.e., warning-no warning), a measure of this uncertainty is the 
number of wrong messages issued in terms of “surprises” (events missed by the warning system) or “false alarms.” Given 
the range of repercussions of errors of either kind, warning system users can be expected to have different reactions to this 
uncertainty. Some will cope better with false alarms, others with surprises. This will affect preferences with respect to sys-
tem sensitivity; that is, the threshold of threat evidence required for the realization of the warning, each threshold having a 
given false alarm/surprise trade-off. This article adopts an expected utility theory perspective to define different false alarm/
surprise trade-offs for users of a warning system. An analytical expression for a cost function is proposed, which under 
certain conditions depends only on one parameter under the control of forecasters (i.e., number of tolerated surprises). We 
show quantitatively how optimal trade-offs depend on what is at stake for users and their capability to react to warnings, 
and how users’ varying needs represent a dilemma for a weather service regarding false alarm/surprise trade-off settings. In 
particular, it is shown that unbiased warnings—a condition often rewarded at the verification stage—do not hold any specific 
virtue for minimizing losses. A general discussion follows regarding the need to better understand and better communicate 
this dilemma to policy makers, users, and the public.
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1  Introduction

Warning systems are a means of communicating an impend-
ing threat to specific users or the general public. In techno-
logically developed societies, warning systems are ubiqui-
tous and range from uses such as alerts for home trespassing, 
detecting illnesses in automated medical diagnoses, sign-
aling insolvency in banks, to announcing the imminence 
of a tsunami (Choo 2009). These systems have grown in 
importance in the last decades, developing into what are now 
called Multi-Hazard Early Warning Systems (MHEWSs), 
the aim of which is to centralize information about multiple 
threats within a single system (WMO 2020).

The Sendai Framework for Disaster Risk Reduction 
2015–2030 recognizes the significant benefits of MHEWSs 
by incorporating them into one of its seven global targets 
(see UN 2015). In the case of weather services, warnings 
apply to several different phenomena at different time scales, 
ranging from tornados in the very-short scale to droughts at 
a seasonal scale (WMO 2020). In general, warning systems 
have been shown to be beneficial for the community (see for 
example Rogers and Tsirkunov 2011).

For a warning system to have any success, it must first and 
foremost be in fact capable of detecting the threat for which 
it is designed (for a list of main requirements for an effective 
warning system see Table 2 of Choo 2009). The degree of this 
ability and its capacity to assist users to make relevant deci-
sions will in the long term define the value of the system. But 
all systems are imperfect at least to some degree, and hence 
irrespective of accuracy, developers and users must basically 
agree on the parameter of system sensitivity. That is, does the 
user need or prefer a system in which the alarm goes off as 
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soon as any suspicion of threat is perceived (“trigger happy”), 
or one whose operators “hold their nerve,” and require a siz-
able bulk of threat evidence for system activation? [Note: the 
colloquial terminology used in much of the literature describ-
ing these two states seems to this author to be equivocal. We 
follow that of Young (2017), which seems more intuitive].

Between these extremes lies a spectrum of possible choices 
for calibration with a middle position which has the virtue 
of having no “frequency bias” (ratio of number of predicted 
events over number of observed events, see Wilks 2006), that 
is, there are as many warnings triggered as events occurring 
in reality (although, alas, not all warnings result in events nor 
are all events forewarned). In the common lexicon of warn-
ing systems, this is usually described as the trade-off between 
false alarms and surprises or misses (see Table 1; see also for 
example Sättele et al. 2016). Verification studies show that 
different applications tend to have different trade-off settings, 
presumably because users are more or less resistant to false 
alarms and surprises for different kinds of threats (Swets et al. 
2000a). This naturally puts the onus at least partially on the 
organization responsible for issuing the warning, which cre-
ates for the issuer the challenge to determine a reasonable and 
justifiable trade-off setting that will ensure the accomplishment 
of its mission.

During the development phase, it is possible to hedge a 
warning system toward either of the two extremes mentioned 
above, yet a truly functional understanding of its behavior can 
only be gained after a period of use and a thorough verifi-
cation process. Before a verification stage is reached, other 
influences may also intervene—for example, through peer/
public/user pressure—to shift parameters toward a trade-off 
different from the initial settings. As a result, warning system 
calibration is often a result of science-based policy mixed with 
a public relations component (see Choo 2009). In the case of 
weather events, it can be seen that many warning systems tend 
toward the “trigger happy” end of the spectrum favoring false 
alarms over surprises, presumably because much of the gen-
eral public is badly affected by unannounced serious weather 
events (see Brooks and Correia 2018).

For example, after a serious missed event that had far-
reaching consequences, Météo-France was encouraged to 
establish a “doctrine” defining how certain events were 
to be framed in terms of warnings. Among the targets 
set, it was established that for all cases assessed within a 
24-h forecast, surprises could not be higher than 2% and 
false alarms could not be greater than 16% (Gillet-Chaulet 

2020). Similarly, Brooks and Correia (2018) observed that 
in 2012, with respect to tornado warnings in the US, an 
apparent emphasis on reducing FAR led to a change in the 
threshold for issuing warnings.

A descriptive summary of how weather warnings are 
calibrated in different systems around the world (i.e., 
their different false alarm/surprise trade-offs) can help to 
guide institutions approaching this issue for the first time. 
But adopting a system calibration that has been strongly 
affected by a single event, or a small number of highly 
publicized events, has the weakness of potentially costly 
and stressful false alarms, and is therefore limited as an 
argument for new stakeholders. It is in this situation that 
prescriptive—instead of descriptive—approaches are 
needed to find the most appropriate rationale for a weather 
office to solve this dilemma.

In order to accomplish this, Sect. 2 introduces a concep-
tual model based on the minimization of a cost function, and 
different approximations are proposed to simulate cases rele-
vant to weather information users. Section 3 presents results 
for three cases using a set of different parameter values to 
establish the robustness of results. In Sect. 4, conclusions 
and suggestions for future work are discussed.

2 � A simple conceptual model

We analyze this dilemma through a prescriptive approach, 
using the conceptual model discussed by Sättele et  al. 
(2016), and by Didier et al. (2017). A good primer on related 
theories of risk and expected utility as well as a discussion 
on their implications can be found in Baron (2008, Chap. 
10). There are, however, some differences between the mod-
els addressed there and our adaptation for the issue under 
discussion. As we shall see, the problem is reduced here to 
its bare bones, based on the minimization of a cost func-
tion or risk function, considering only a minimal number of 
parameters of cost and loss in a given situation and whether 
a warning was issued or not. It does not consider any other 
parameter used in standardized warning systems, such as 
timeliness (see OASIS 2010).

The chosen cost function structure assumes that actions 
triggered by a warning are not correlated in time or space, 
and that actions are equally effective every time they are 
taken.

Table 1   Contingency table 
for the verification of a simple 
warning system (see, for 
example, Wilks 2006)

Event No event

Warning Hit (correct prediction of event) False alarm Total number of warnings
No warning Surprise or Miss Correct negative Total number without warning

Total number of events Total number of no events Total number of cases
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2.1 � The cost/loss function

Table  2 shows the same as Table  1 but in this time is 
expressed in terms of probabilities. Using these expressions, 
we can write a cost function for a warning system as 

where RW represents the expected cost (or risk) of an event 
E with the existence of an operational warning system that 
generates individual warnings W, and whose performance 
we know (i.e., the probability P of each term is known). 
Each term refers to the four sectors in the contingency table 
(Table 2) associated with the subscripts, H for Hit, S for 
Surprise, FA for False alarm, and CN for Correct negative. 
The four L parameters refer to the losses or costs associ-
ated with each of the four cases. The first term represents, 
then, a successful warning (an event forewarned, a Hit) 
and its associated loss LH . This loss can be thought of as 
LH = Lc + Lp , where Lc represents the cost of the protective 
measures taken, and Lp the loss suffered despite those meas-
ures. The second term represents the cases when the event 
occurs without forewarning (surprise), where the associated 
loss is Lu , the result of absence of protective measures. The 
third term (false alarm) describes the activation of protec-
tive actions with their associated costs, in the absence of the 
event, and this value is identical to the cost Lc , introduced 
above. The fourth term represents the system when no event 
is registered and no warning has been activated—which is 
most of the time—and we can take advantage of this term 
to represent basic and ongoing costs of system development 
and maintenance as in Didier et al. (2017). This definition 
of losses and costs is somewhat simpler than what is pre-
sented by Lopez et al. (2020), who considered more specific 
situations such as that “the additional cost of transporting 
back to headquarters non-perishable food that had been 
prepositioned, would be an additional cost of acting in vain 
that would not have been incurred if the extreme event had 
occurred.” This simplification, we believe, is an advantage 
to better understand the issue.

With these definitions, expression (1) can be rewritten as

where Lsys corresponds to the cost of the development and 
maintenance of the system during the period of exploitation, 
independent of event activity. Applying properties of the 
conditional probabilities we can rewrite (2) as

(1)
RW = P(W,E)LH + P(¬W,E)LS + P(W,¬E)LFA + P(¬W,¬E)LCN ,

(2)
RW = P(W,E)

(
Lc + Lp

)
+ P(¬W,E)Lu + P(W,¬E)Lc + Lsys,

(3)
RW = P(W|E)P(E)

(

Lc + Lp
)

+ P(¬W|E)P(E)Lu
+ P(¬E|W)P(W)Lc + Lsys.

The conditional probability in the first term can be taken 
from verification exercises as being equal to the probability 
of detection (POD), which is defined as hits/(hits + surprises) 
in Table 1 (see Wilks 2006). The POD—also called Hit 
rate—is directly associated with the rate of surprises (sim-
ply 1-POD), and at the same time a very popular categori-
cal statistic. The probability factors in the second term can 
be rewritten as (1 − P(W|E))P(E) = (1 − POD)P(E) . The 
conditional probability in the third term can be associated 
with the False Alarm Ratio (FAR which is defined as false 
alarms/(hits + false alarms), not to be confused with False 
Alarm rate, used in the ROC diagram –see Wilks 2006). In 
addition, given that

(which can be obtained from Table 2 and the definitions of 
POD and FAR), we finally get

It is interesting to note that this expression can also be 
derived with identical results without the need for "correct 
negatives" of the contingency table (Table 1). This is impor-
tant because many warning verification studies ignore the 
"correct negatives," since they are often ill-defined (see, for 
example, discussion in Stephenson et al. 2010).

2.2 � Preliminary analysis of the cost/loss function

Expression (5) is the main tool for what follows, particu-
larly the expression between square brackets. The first thing 
to notice is that among the parameters in the expression, 
neither P(E) nor Lsys play a part in the minimization of the 
cost/loss function once the event is defined and the warning 
system available. This should not be interpreted as saying 
that the term between square brackets is independent of the 
event since losses are usually correlated with the rarity of an 

(4)
P(W)

P(E)
=

POD

1 − FAR
,

(5)
RW = P(E)

[
POD

(
Lc + Lp

)
+ (1 − POD)Lu +

FARPOD

1 − FAR
Lc

]
+ Lsys.

Table 2   Contingency table for the verification of a simple warning 
system written in terms of joint and marginal probabilities, where 
the symbol “¬” stands for “no”.  For example, the joint probability 
P(W,¬E) is to be interpreted as the joint probability of warnings (W) 
which coincided with no events (¬E)

Event No event Marginal 
probabil-
ity

Warning P(W, E) P(W,¬ E) P(W)
No warning P(¬W, E) P(¬W, ¬E) P(¬W)
Marginal probability P(E) P(¬ E) = 1 − P(E) 1
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event. The term Lsys is, for reasons of its independence from 
the management of the system sensitivity, also not affected 
by the minimization of the cost function.

Given a warning system that triggers an intervention for 
each warning emitted, each with its estimated losses and 
costs, we can see that the minimization of (5) is, as expected, 
a function only of POD and the false alarm ratio FAR.

Let us suppose that some years into operation, the verifi-
cation process produces a given pair of (POD, FAR) values. 
This pair of values tells us that, overall, the system displays 
a certain trade-off, perhaps one that is desired or one that is 
simply accidental. The question that may arise is whether 
this trade-off between POD and FAR is in fact optimal for 
the threat in question with its associated losses and capabili-
ties of response. To answer this question, we need to know 
what path in a given warning system the pair (POD, FAR) 
follows when we vary the evidence threshold to trigger a 
warning. For example, the more demanding we become in 
terms of evidence prior to warning emission, the more we 
reduce incidence of false alarms (FAR), but also the hits 
(POD). But at what rate each?

In practice, what we want is for FAR to be written in 
expression (5) as a function of POD and a parameter of qual-
ity that describes changes in FAR given a change in POD for 
a specific warning system. There is no obvious theoretical 
expression that relates POD and FAR, hence addressing this 
question requires that we make some assumptions.

Once we define this relation, we will have a function 
depending on five parameters: the three factors defining the 
losses, the skill parameter of the warning system (see next 
subsections), and finally POD, the only parameter in which 
the forecasters can have a clear influence by simply changing 
the threshold—through measures that may be subjective or 
objective—used to trigger warnings.

2.3 � The POD–FAR relation

Here, we will introduce two different versions of this rela-
tion, each one with a specific rationale, the aim being to try 
to sweep a number of families large enough to make our 
results more general. A number of other relations were also 
tested but these did not add new insights.

2.3.1 � The CSI isoline

In the verification of warning systems, the Critical Success 
Index [also known as Threat Score and defined as CSI = hits/
(hits + false alarms + misses)] is widely used, mostly for 
being independent of the category of “correct negatives” but 
also because of its presence in the “Performance diagram” 
(Roebber 2009), a much used visualization tool. However, 
the CSI is not always the best choice for verification pur-
poses (see for example Schaefer 1990) which has led some 

users to adopt other scores. For the case under study, we will 
see that it has some interesting properties. Following Roeb-
ber (2009), we can see that for a given value of CSI we get

where CSI lies in the interval [0,1], with the upper limit 
defining a perfect warning system. We can then rewrite 
expression (5) as

Figure 1 illustrates different curves of CSI in a Perfor-
mance diagram, defining possible paths of the POD–FAR 
relation. A notable characteristic of this parametrization is 
that expression (6) is now linear in POD.

2.3.2 � The power law

Despite the advantages of obtaining a linear relation with 
the previous parameterization illustrated in Fig. 1, many 
real-life examples show that, to the contrary, the relation 
between POD and FAR does not seem to follow isolines of 
CSI. Using ensemble forecasting, which produces probabili-
ties for any desired forecast parameter, several authors have 
varied the warning trigger threshold to estimate the POD-
FAR relation (see, for example, Adams-Selin et al. 2019; 
Flora et al. 2019; Gagne et al. 2017, 2019).

One distinctive issue lacking in the previous parametriza-
tion is that—irrespective of the warning system quality—
when POD becomes very close to 1, FAR should continue 

FAR = 1 −
1(

1

CSI

)
−

(
1

POD

)
+ 1

,

(6)
RW = P(E)

[

POD
(

Lc + Lp
)

+ (1 − POD)Lu +
(POD
CSI

− 1
)

Lc
]

+ Lsys.

Fig. 1   CSI-based POD–FAR relation represented in a Performance 
Diagram (POD versus 1-FAR). Colored lines (CSI isolines) are paths 
for the relation considering that increasing or decreasing POD does 
not impact the CSI. The highest skill is reached in the upper right 
corner of the performance diagram
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increasing. That is, a desired property of the curve should be 
that when we demand a very small level of missed events, 
false alarms have to be high too. But to what extent? This 
depends on the quality of the warning system, but we want 
that our parameterization represents that FAR → 1 when 
POD → 1 , each approaching at a different speed depend-
ing on the skill of the system. This is a very important 
issue, because the third term in expression (5) diverges as 
FAR → 1.

There are in fact many functions that exhibit this charac-
teristic and the authors have tested a large variety of such 
functions. We have chosen here to illustrate the one with the 
simplest form that allows us to control the speed of approxi-
mation of FAR to 1, when POD reaches the vicinity of 1. 
A simple expression is FAR = POD

r , where r is a positive 
number. Figure 2 shows its aspect in a performance diagram.

For r = 1, we can see that both approach at the same 
speed. When r > 1, we obtain a POD greater than FAR. The 
opposite is the case when r < 1. A larger r represents systems 
with more skill.

2.4 � Losses and costs

As we have said, our focus here is on loss minimization. And 
as also mentioned earlier, the losses present in this function 
have their clearest interpretation when measured in terms of 
monetary units, or even in any other quantitative unit that 
allows for algebraic operations. Beyond this simple interpre-
tation, if used for considerations of losses of lives or other 
non-quantifiable impacts, the cost function becomes on the 
one hand more useful, but on the other much less precise 
(for a pledge to use cost functions as a tool for a thought 
process, see Sunstein 2000). In what follows we will pursue 

a predominantly quantitative approach but we will also con-
sider some broader interpretations.

As we saw above, the standing cost of the system [last 
term in expression (5)] does not play a role in loss minimi-
zation of the kind attempted here, so although it is at the 
core of many decisions regarding development of warning 
systems, it will not be further discussed here. The other three 
losses are relevant to the minimization.

We will not dwell on the details nor on the role of these 
losses in the cost function, but it is important to keep in mind 
that they are interrelated. For example:

1.	 It is reasonable to have a costly warning system only 
for grave losses Lu that can be diminished by a timely 
warning.

2.	 The loss of a forewarned event Lp should be smaller than 
that provoked by a surprise event Lu.

3.	 The cost of a protective intervention Lc should be lower 
than the loss associated with a surprise event Lu.

The cases discussed in the results section take these rela-
tions into account.

It is important to mention that the cost of an interven-
tion with protective measures may have a subjective com-
ponent. For example, on learning of a hailstorm warning, 
some members of the public may react by covering their cars 
with some material already at hand. This is probably a near 
cost-free action. But, if the warning arrives in the middle 
of the night, already under rain, some owners may wonder 
whether the action is worth the effort. An economist might 
suggest trying to estimate the cost of such an action by sim-
ply imagining how much money the person would have paid 
in order not to perform the work themselves. This is usually 
referred to as “willingness to pay” (see Baron 2008). This 
interpretation is useful to understand that some apparently 
cost-free interventions can eventually be represented in this 
formulation by specific non-zero values. And that this action 
carried out by a large population may be finally represented 
by a large overall cost.

2.5 � The impact of repeated false alarms

The discussion in the previous sections assumes, as a pre-
scriptive approach, that users follow warnings in an identi-
cal way whether the warning system is very accurate or if it 
generates a large number of false alarms. But, as Breznitz 
(1984) puts it, ‘‘Each false alarm reduces the credibility of a 
warning system. The credibility loss following a false alarm 
episode has serious ramifications to behavior in a variety of 
response channels.’’ This seems so obvious that we gener-
ally assume as a fact that the public will tend to react like 
villagers in the fable The boy who cried Wolf from Aesop, 

Fig. 2   Power-law based POD–FAR relation represented in a Perfor-
mance Diagram (POD versus 1-FAR). Colored lines are paths for the 
relation considering that increasing or decreasing POD maintains r 
constant. The highest skill is reached in the upper right corner of the 
performance diagram
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who, tired by the boy's false cries, fatally decided not to 
protect the sheep.

Simmons and Sutter (2009) found that for tornado warn-
ings, there is a strong relation between FAR and fatalities 
as well as injuries. Regarding hurricanes, Hallegatte (2012) 
states that the evacuation prior to Katrina in 2005 was 
hampered by unnecessary ones associated with hurricanes 
George [September 1998] and Ivan [September 2004]. Citing 
several sources, Sättele et al. (2016) argue that, furthermore, 
frequent false alarms can lead to excessive intervention costs 
as well as reduce compliance with future warnings. LeClerc 
and Joslyn (2015) presented a thorough review of the topic 
and carried out an experiment that showed that very high 
false alarm rates led to inferior decision making.

However, other studies, in different contexts, show less 
public sensitivity to FAR. For example, Dow and Cutter’s 
(1998) study of hurricane evacuation found no evidence of 
a lower evacuation rate for hurricane Fran in 1996, which 
occurred just weeks after a false alarm evacuation for 
hurricane Bertha. Later, Barnes et al. (2007) commented 
that ‘‘Evidence for the cry-wolf effect in natural hazards 
research, however, has not been forthcoming,” and suggest 
that the public is by and large not dissuaded from action by 
known false alarms. Lately, Lim et al. (2019) after a study 
of tornado warnings in the southeastern United States sug-
gest that concerns about high false alarm ratios generating a 
complacent public may be overblown. Trainor et al. (2015) 
go further and exhibit the varied definitions of “false alarm” 
among the public, arguing and showing evidence of the dif-
ference between the perceived false alarms and actual false 
alarms. This difference is neither negligible nor only of aca-
demic interest, since the cry wolf effect is dependent on the 
former.

As we can see, the existence, impact, and measurement 
of a “cry-wolf effect” are still an open debate. Nonetheless, 
in what follows we will assume its existence and proportion-
ality with actual false alarms to study its probable impact.

In order to include the “cry-wolf effect” in the expres-
sion of risk RW presented in (5), we assume that when false 
alarms abound, protective actions are less thorough (both 
less expensive and less effective).

This effect can be represented by replacing the con-
stants Lc and Lp in (5) by the expressions of the form 
L∗
c
= (1 − FAR)

kLc and L∗
p
= Lp + FARk(Lu − Lp) .  The 

exponent k only controls the public´s tolerance to false 
alarms, with larger values of k representing the more 
intolerant ones. The cost L∗

c
 now diminishes for increas-

ing FAR, while the protective loss L∗
p
 nears the value of the 

unprotected loss Lu as FAR approaches 1. For the sake of 
simplicity, we will take k = 1, which implies a rather high 
level of mistrust toward the warning system. This choice 

will help us appreciate clearly its impact in the user’s deci-
sion making. With this we can rewrite (5) as

As in expression (5), we also need to write FAR as a 
function of POD.

3 � Results

In what follows we present three distinct cases where the 
cost function is defined by three different sets of costs and 
losses. At the same time, each case will be treated with 
the two POD–FAR relations presented in Sects. 2.3.1 and 
2.3.2. Since each of these functions is associated with a 
parameter, three different values are presented for each 
parameter in order to span the more important character-
istic of its behavior.

The three cases present different combinations of losses 
that can be associated with typical real-life events. In order 
to simplify our treatment, we have assumed a fixed value 
to unprotected losses Lu , which is relatively independent 
from the warning system management, while Lc and Lp 
will be modified. Terms such as “expensive” or “ineffec-
tive” refer, then, to the relative cost of a measure and its 
relative capacity to reduce losses as compared to Lu.

The three cases for different sets of cost/loss are:

1.	 Inexpensive but effective response measures: An 
example of such a case would be a warning sys-
tem against hailstorms, where users put their cars 
under cover. For this case, we have chosen the 
triadLp = 10, Lu = 100, Lc = 5.

2.	 Expensive, effective response measures: An exam-
ple of such a case would be a warning system against 
frost in sensitive crops, where the users turn on heat-
ers as protective measures (see Snyder and Melo-
Abreu 2005). For this case, we have chosen the triad 
Lp = 10, Lu = 100, Lc = 50.

3.	 Inexpensive but barely effective response measures: 
An example of such a case could be a warning system 
against strong winds, calling for the public to take minor 
mitigating steps to cover their windows. For this case, 
we have chosen the triad Lp = 50, Lu = 100, Lc = 5.

Table  3 lists the parameters used in the mentioned 
experiments.

(7)

RW = P(E)
[

POD
(

(1 − FAR)Lc + Lp + FAR
(

Lu − Lp
))

+(1 − POD)Lu + FARPODLc
]

+ Lsys.
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3.1 � Case 1: Inexpensive but effective response 
measures

The upper panels of Fig. 3 show the core of the cost func-
tion (factor between brackets) presented in expression (5) 
for Case 1 as defined in Table 3. The left panel depicts the 
linear relation through the use of the CSI-based POD–FAR 
relation defined in expression (6), while the right panel 
illustrates the cost function under the power law discussed 
in Sect. 2.3.2.

The linear relation (upper left panel of Fig. 3) gives an 
idea of the general behavior of the curve. For the differ-
ent levels of skill plotted—different values of CSI—it can 
be seen that maximizing the POD minimizes losses, while 
minimizing FAR (POD near minimum) seems to be the 
worst strategy. This simply tells us that for the case of inex-
pensive but effective response measures, the best strategy 
is to over-forecast as much as you can and cope with false 
alarms. This is quite an unnatural result due to the linearity 
of the expression.

The figure also tells us that, as expected, the more accu-
rate the warning system is—where CSI is closer to 1—the 
less will be the overall cost for any particular POD chosen. 
It is interesting to see, though, that according to this figure, 
increases in the warning system skill in fact bring very little 
gain (shown by the proximity of the yellow and red lines). 
This would suggest that there may be a limit beyond which 
further improving the warning system does not bring practi-
cal gains.

The upper right panel presents the cost function for the 
power-law POD–FAR relation and here it can be seen that, 
as in the linear relation, the better option is still to refrain 
from minimizing FAR. Unlike what was seen in the left-
hand panel, however, maximizing POD now seems to be a 
very bad strategy. The vertical colored lines show the value 
of POD that a system should have if no frequency bias is 
acceptable (if the average number of events must coincide 
with the average number of predicted events). As we can see 
for the three different values of warning system skill in this 
figure, the minimum of the cost function is clearly still to be 

found on the over-forecasting side, that is, with a positive 
frequency bias (“trigger happy”).

Compared to the linear solution, the power law POD-FAR 
suggests not only a strategy change of POD-FAR trade-off 
for different skill levels (minima are obtained at different lev-
els of POD), but also that the minimum of the cost function 
in fact reacts strongly to improvements in warning system 
skill.

3.2 � Case 2: Expensive and effective response 
measures

The middle panels of Fig. 3 show the core of the cost func-
tion presented in expression (5) for Case 2 as defined in 
Table 3. The left panel depicts the linear relation through the 
use of the CSI-based POD–FAR relation defined in expres-
sion (6), while the right panel uses the power law discussed 
in Sect. 2.3.2.

Contrary to what was observed in Case 1, and for all three 
different levels of skill plotted, the middle left panel shows 
that the lowest cost for the operations is associated with a 
minimized POD, whereas maximizing FAR (POD near max-
imum) seems to be the worst strategy. This is simply telling 
us that for the case of expensive and effective reactive meas-
ures, the best strategy is to avoid false alarms. It is interest-
ing to note that, according to this formulation, the better the 
warning system (higher CSI), the lower its sensitivity to the 
trade-off between POD and FAR. Other experiments show 
that this is a consequence of the set of losses chosen, and we 
will develop this further in the next section.

The middle right panel presents the power law POD–FAR 
relation and it can be seen that, as in Case 1, the impact of 
the diverging term for POD approaching 1 is large. Still, 
minima location is dependent on the quality of the warning 
system (value of r), moving toward higher levels of POD 
for better systems.

The vertical colored lines again show the value of POD 
for a warning system without frequency bias. As we can see, 
the three variations displayed in this figure indicate that the 
correct strategy for loss reduction is to under-forecast, that 
is, a negative frequency bias (you should “hold your nerve”).

It is also worth noticing the large sensitivity to the quality 
of the warnings. As we can see, the term associated with the 
response measures in expression (5) is the only dependent 
on forecast quality (forecast quality being the link between 
FAR and POD), and in this case, Lc takes the largest value 
of all cases studied.

3.3 � Case 3: Inexpensive but barely effective 
response measures

The lower panels of Fig. 3 show that the behavior here 
is very similar to that of Case 1, both for the CSI-based 

Table 3   List of parameters used for solving the cost function defined 
in (5) for each of the cases analyzed. The three columns on the left 
define the losses and costs, while the two on the right display the dif-
ferent values of the parameters defining the POD–FAR relation

L
p

L
u

L
c

Parameter representing skill

CSI (as defined in 2.3.1) r (as 
defined in 
2.3.2)

Case 1 10 100 5 0.25; 0.50; 0.75 1/3; 1; 3
Case 2 10 100 50 0.25; 0.50; 0.75 1/3; 1; 3
Case 3 50 100 5 0.25; 0.50; 0.75 1/3; 1; 3
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Fig. 3   Cost function as defined in (5) for the three cases under study 
(rows, from top to bottom). Left side shows results for the use of the 
CSI-based POD–FAR relation, while the right side shows results for 
the power-law based POD–FAR relation. Each panel depicts three 
curves in different colors obtained with different parameters of the 

POD–FAR relation used. The vertical lines of the same color define 
the POD values corresponding to an unbiased warning system. To the 
left of these lines, the system under-forecasts (“holds its nerve”), and 
to the right over-forecasts (“trigger happy”). Note that only the factor 
between brackets of the cost function defined in (5) is presented
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POD–FAR and for the power-law POD–FAR relation, and 
for that reason will not be discussed in detail. One visible 
difference is that before POD nears 1, the cost functions are 
less dependent on the trade-off between POD and FAR.

From expression (6), we can see that there exists a combi-
nation of cost and losses and CSI for which the cost function 
is fully independent of the POD-FAR trade-off. This can be 
expressed as

This expression allows for a large combination of cases, 
but clearly eliminates response measures that are both inex-
pensive (relatively low Lc ), and effective (relatively low Lp ) 
as an option (our Case 1).

3.4 � Impact of repeated false alarms

As we can see on the right panels of Fig. 3, it is highly 
suboptimal under most conditions for a warning system to 
produce a large FAR. In practice, as discussed in Sect. 2.5, 
if overwhelmed by false alarms, it can be expected that users 
may modify their reactions to the warning system. Con-
sciously or unconsciously, they may behave like the villag-
ers in the fable and become less thorough in the application 
of protective measures.

Figure 4 depicts the same curves as seen in the solid lines 
of the top right panel of Fig. 3, but now also plotted is a 
representation of a strongly distrustful public (dotted lines). 
As we can see, the desired effect of reducing the undesired 
costs of a large number of false alarms by not paying atten-
tion to them is successful. Still, the impact on the cost func-
tion is quite large and the net effect is to drastically reduce 

(8)Lc

(
1 +

1

CSI

)
+ Lp = Lu.

the benefit of the warning system—shown by the higher 
cost-function values overall—and to move the optimal POD 
toward lower values. It is interesting to see, furthermore, that 
for the lowest skill (r = 1/3), the cost function has a near-flat 
shape, indicating that the warning system has lost both its 
sensitivity to POD and its practical value.

As was discussed in Sect. 2.5, we have set the “cry-wolf 
effect” to quite a high level to explore its effects, and hence, 
a more realistic case would fall somewhere between the 
curves with and without the effect.

4 � Conclusions and future work

We presented here a mathematical expression that is a func-
tion of costs, losses, and POD and FAR scores, with the aim 
of analyzing the false alarm/surprise trade-off for an early 
warning system. In order to write the cost function with a 
single forecaster-controlled parameter, we have chosen dif-
ferent mathematical relations between POD and FAR.

Of the two POD–FAR relations presented here, the first 
is based on the CSI score, and generates a cost function lin-
ear in POD. The second involves a power-law relation that 
takes a more realistic approach and shows a very significant 
impact in the general shape of the cost function.

The linear representation shows that minima in the cost 
function are reached either by issuing “trigger happy” warn-
ings or by the opposite approach, with forecasters “holding 
their nerve,” depending on the set of costs and losses cho-
sen. The more realistic power-law relation between POD and 
FAR modifies the linear results, making them less prone to 
extremes while maintaining their general slant.

Where the relation between protective costs and expected 
losses is such that a response measure can be described as 
“inexpensive but effective,” over-forecasting seems an 
optimal approach. The same is seen to be the case even 
for “inexpensive but barely effective” response measures. 
Where the relation between protective costs and losses can 
be described as “expensive and effective,” however, under-
forecasting would appear to be the optimal approach.

A tendency to set system thresholds toward one or the 
other extreme has already been noticed. As Swets et al. 
(2000b) put it, “… a high prevalence of a problem in a pop-
ulation or a large benefit associated with finding true cases 
generally argues for a lenient threshold; conversely, a low 
prevalence or a high cost for false alarms generally calls for 
a strict threshold.”

As other researchers in this field have found, we find that 
unbiased warnings systems—neither under nor over fore-
casting—do not have any general “virtue” for minimizing 
losses. That is, an equality between the number of real events 
and the number of warnings does not necessarily represent a 
convenient feature for a warning system. For those interested 

Fig. 4   Cost function as defined in (5) for two different cases. Solid 
lines depict the same curves as seen in the top right panel of Fig. 3. 
Dotted lines show the impact on these of a user whose protective 
actions are dampened due to abundance of false alarms
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and trained in numerical forecasting, where modeled phe-
nomena (e.g., extremes) should have the same recurrence 
rate as those observed in reality (see for example Guan and 
Zhu 2017), this may be somewhat surprising.

In this simple analysis, the optimal trade-off between 
POD and FAR was shown to be case dependent—some 
users need “trigger-happy” warnings, others that forecast-
ers “hold their nerve”—which suggests that weather services 
do not have an easy choice. They have at least three differ-
ent options: they can satisfy some users and frustrate others 
(see for example Samenow 2013), with the former not even 
knowing that they are receiving preferential treatment; they 
can opt for an intermediate position, perhaps choosing to 
have no frequency bias; or they can try to build one general 
cost function that maximizes the overall benefit to the com-
munity (although this is probably a daunting and futile task). 
An example of the first case, in which a warning system set-
ting focuses on a specific user in northwestern Peru can be 
found in Lopez et al. (2020).

Our study of the impact of large FAR values, in the con-
text of a distrusting public, suggests that if a warning system 
could guarantee an optimal POD-FAR trade-off (that is, the 
minimum in the cost function), strict user compliance would 
be the rational action. When this is not the case, it may in 
fact be rational for individual users to mistrust warnings and 
not to comply with recommended measures. It is important 
to recall that we have assumed here a strong relation between 
perceived and actual false alarms; when this is not the case, 
as, for example, in the cases described by Trainor et al. 
(2015), our results may not apply. Further, these authors 
also caution that “even simple concepts like false alarm 
are significantly more complex than they appear, and good 
policy needs extensive, detailed analysis to understand these 
phenomenon and in turn their implications.” Future studies 
should take into consideration how this could affect simple 
models like the one presented here.

Given that a warning system operator cannot be fully 
cognizant of the stakes of any particular user—i.e., their 
personal cost function—he/she cannot act fully in the user’s 
best interests. It is up to the user to “debias” the warnings—
and this is what distrustful users are trying to do—in order 
to make generic warnings more useful for their individual 
needs. The responsibility of producing an optimal warning 
for each user cannot, hence, be transferred solely to the insti-
tution in charge of issuing the warning. This is unfortunate, 
and is not a very satisfying conclusion for the weather office 
or for the public.

There are, however, ways in which the repercussions 
and perceptions of a warning system within a given com-
munity could be better understood by the institutions issu-
ing those warnings. Through social networks, perhaps a 
proxy of the cost function of an entire community can 
be found by “measuring” user complaints and modifying 

warning system settings in response (as if paraphrasing 
Baron’s (2008) “our choices reveal our utilities”, with “our 
complaints reveal our utilities”). Consciously or not, this 
is in fact what many weather services already do in an 
effort to avoid negative publicity. And perhaps, this atti-
tude is not as unsophisticated as it may seem at first sight; 
it is clear, for example, that although the losses in expres-
sion (5) can be thought of in terms of monetary units, this 
does not preclude other interpretations such as a general 
malaise, for which an amount of complaining “tweets” 
can become a proxy (see, for example, social media data 
analytics carried out by Lee and Kim 2020).

The experiments presented here and the rationale 
behind them seem to share some objectives with that of 
“Probabilistic forecast games.” A number of these games 
are being developed at the Technology Collaboration 
Program in the wind power division of the International 
Energy Agency (IEA Wind TCP). Under Task 36, Work 
Package 3, devoted to the optimal use of forecasting, they 
exploit the potential of games for experimentation in 
decision-making (see Giebel et al. 2021). The analytical 
model presented here could be used in a game format to 
further the needs of weather services to communicate the 
forecaster dilemma.

It is important to recall that the dilemma discussed here 
is solely the product of a dichotomous form of broadcasting 
warnings (warning, no warning). This issue is one among 
the many reasons why some would rather shift to probabil-
istic warnings, leaving the final decision—to act or not to 
act depending on a probability threshold—to the individual 
receiving the message (see for example; Roulston and Smith 
2004; Joslyn and LeClerc 2012, Fundel et al. 2019). A num-
ber of studies suggest that users with a business background 
can take advantage of probability forecasting (see, for exam-
ple, Howard et al. 2021 and Howard et al. 2022). Even for 
cases with imminent threats to public safety—where at first 
sight a probability format may seem to promote hesitation—
studies have shown promising results (see for example Miran 
et al. 2018).

However, it should be kept in mind that probability warn-
ings open the door to the difficulty of understanding the slip-
pery concept of probability (see de Elía and Laprise 2005), 
as well as to the psychological and cognitive biases not fully 
controlled by those in charge of issuing the warning (see, for 
example, Chater et al. 2020).

These obstacles may hinder probability forecasting from 
becoming a universal solution, and the POD-FAR dilemma 
seems to be unavoidable for some cases. For the time being, 
then, weather services must do their best to arrive at good 
system settings given what they know of their user commu-
nities, and make all possible efforts to explain to policy mak-
ers, specialized users, and the general public the imperfect 
trade-off between surprises and false alarms.
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